An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel.

نویسندگان

  • Oliver H Wittekindt
  • Violeta Visan
  • Hiroaki Tomita
  • Faiqa Imtiaz
  • Jay J Gargus
  • Frank Lehmann-Horn
  • Stephan Grissmer
  • Deborah J Morris-Rosendahl
چکیده

We have isolated an hSK3 isoform from a human embryonic cDNA library that we have named hSK3_ex4. This isoform contains a 15 amino acid insertion within the S5 to P-loop segment. Transcripts encoding hSK3_ex4 are coexpressed at lower levels with hSK3 in neuronal as well as in non-neuronal tissues. To investigate the pharmacokinetic properties of hSK3_ex4, we expressed the isoforms hSK3 and hSK3_ex4 in tsA cells. Both isoforms were similarly activated by cytosolic Ca2+ (hSK3, EC50=0.91 +/- 0.4 microM; hSK3_ex4, EC50=0.78 +/- 0.2 microM) and by 1-ethyl-2-benzimidazolinone (hSK3, EC50=0.17 mM; hSK3_ex4, 0.19 mM). They were both blocked by tetraethylammonium (hSK3, Kd=2.2 mM; hSK3_ex4, 2.6 mM) and showed similar permeabilities relative to K+ for Cs+ (hSK3, 0.17 +/- 0.04, n=3; hSK3_ex4, 0.17 +/- 0.05, n=3) and Rb+ (hSK3, 0.79 +/- 0.04, n=3; hSK3_ex4, 0.8 +/- 0.07, n=3). Ba2+ blocked both isoforms, and in both cases, the block was strongest at hyperpolarizing membrane potentials. However, the voltage-dependence of hSK3 was stronger than that of hSK3_ex4. The most obvious distinguishing feature of this new isoform was that whereas hSK3 was blocked by apamin (Kd=0.8 nM), scyllatoxin (Kd=2.1 nM), and d-tubocurarine (Kd=33.4 microM), hSK3_ex4 was not affected by apamin up to 100 nM, scyllatoxin up to 500 nM, and d-tubocurarine up to 500 microM. So far, isoform hSK3_ex4 forms the only small-conductance calcium-activated potassium (SK) channels, which are insensitive to the classic SK blockers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction.

Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca(2+)-activated K(+) (SK) channel, SK3, promotes feedback regulation of myometrial Ca(2+) and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mic...

متن کامل

Myometrial expression of small conductance Ca -activated K channels depresses phasic uterine contraction

Brown A, Cornwell T, Korniyenko I, Solodushko V, Bond CT, Adelman JP, Taylor MS. Myometrial expression of small conductance Ca -activated K channels depresses phasic uterine contraction. Am J Physiol Cell Physiol 292: C832–C840, 2007; doi:10.1152/ajpcell.00268.2006.—Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca...

متن کامل

Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channels.

Activation of small-conductance calcium (Ca(2+))-dependent potassium (K(Ca)2) channels (herein called "SK") produces membrane hyperpolarization to regulate membrane excitability. Three subtypes (SK1-3) have been cloned and are distributed throughout the nervous system, smooth muscle, and heart. It is difficult to discern the physiological role of individual channel subtypes as most blockers or ...

متن کامل

The role and regulation of small conductance CA2+ activated K+ channel subtype 3 in myometrial contraction and placental development

Mechanisms that control the timing of labor have yet to be fully characterized. In a previous study (8), over-expression of small conductance calcium-activated K channel subtype 3 in transgenic mice, Kcnn3/Kcnn3 (also known as SK3), led to compromised parturition, which demonstrated the important role of KCNN3 in the delivery process. Based on these findings, we hypothesized that SK3 channel ex...

متن کامل

Identification of SK3 channel as a new mediator of breast cancer cell migration.

Potassium channels have been involved in epithelial tumorigenesis but the role of small-conductance Ca(2+)-activated K(+) channels is unknown. We report here that small-conductance Ca(2+)-activated K(+) channels are expressed in a highly metastasizing mammary cancer cell line, MDA-MB-435s. Patch-clamp recordings showed typical small-conductance Ca(2+)-activated K(+) channel-mediated currents se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 2004